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Abstract-The problem considered is that of calculating the stresses near the tip of a radial crack at the
edge of a circular hole in an infinite elastic solid when the crack and the hole are loaded in an arbitrary
fashion. The problem is reduced to a pair of singular integral equations which are solved numerically. Two
particular cases are considered in detail: An infinite sheet uniformly loaded remote from the hole and a
localized load acting at the edge of the hole.

I. INTRODUCTION

Consider an infinite elastic solid which, in plane polar coordinates (R, 8), contains a circular
hole 0 s; R s; B, 0 s; 8 s; 21T and a radial edge crack B s; R s; C, 8 = 0 (Fig. 1). The problem we
wish to investigate is that of determining the stresses in the vicinity of the crack tip when the
crack and the hole are loaded in an arbitrary fashion. Via the principle of superposition the
problem, which is solved under the assumptions of plane strain, is seen to be equivalent to that
in which the hole is traction free and the crack is subject to loads of the form

uoo(R,O) =uoo(R, 21T) =- Poft(R/B), B s; R < C

(1.1)

Po having the dimensions of stress. We introduce the dimensionless quantities r =R/B, C =C/B,

S (r 8) =URR(R.O) S =URO(R,O) S (r 8) =UOO(R,O) u(r 8) =EUR(R, 8) v(r 8) =EUo(R, 8)
" , Po' r/J Po' 00 , Po" Po(l + /I)B' , Po(l + /I)B

(1.2)

where E is Young's modulus and /I is Poisson's ratio. In terms of these quantities the problem
may be stated as follows:

Find a solution of the dimensionless, plane strain equations of elasticity in the region
n = {(r, 8): 1< r < 00,0 < 8 < 21T} such that

1. ru, rv and rSjj are continuous functions of (r, 8) in n and are 0(1) at infinity.
2. s99(r, 0) - soo(r, 21T) = 0, 1< r < 00

sr/J(r, 0) - sr/J(r, 21T) = 0, 1< r < 00

3, u(r, 0) - u(r, 21T) = 0, Cs; r < 00

v(r, 0) - v(r, 21T) = 0, Cs; r < 00

4. soo(r, 0) = - ft(r), 1s; r < C
sr/J(r,O) = - 12(r), 1s; r < C

5. srr(l, 8) =sr/J(l, 8) =0, 0 < 8 < 21T

6. lim aO [u(r, 0) - u(r, 21T)] < 00
, ....1+ r

lim oa [v(r, 0) - v(r, 21T)] < 00.
, ....1+ r
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Fig. I. (a) Cracked hole in an uniaxial tensile stress field T. (b) cracked hole with a force P acting at the
perimeter.

2. REDUCTION OF THE PROBLEM TO INTEGRAL EQUATIONS

The problem under consideration may be solved by making use of a Mellin transform
technique akin to that discussed by Tweed and Rooke [2]. Alternatively, the problem may be
solved in terms of continuous distributions of edge dislocations by making use of the results
derived in Dunders and Sendeckyi[3]. In either case it is not difficult to show that the solution is
such that

fc P2(t)dt
u(r, 0) - u(r, 271') = -4(1- v) r '\I[(c _ t)(t -1)]' 1< r < c

and

l
c PI(t) dt

v(r, 0) - v(r, 271') = -4(1- v) r '\I[(c _ t)(t _ I)]' 1< r < c,

where the quantities P;(t) i = 1,2 must satisfy the singular integral equations.

..; f '\I[(c ~;glt-1)]L~ r +K;(r, t)} dt = - /;(r), 1< r < c

with subsidiary conditions

(2.1)

(2.2)

(2.3)

and kernel functions

P;(l) = 0 1= 1,2, (2.4)

and

(2.5)

(2.6)
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3. THE STRESS INTENSITY FACTORS AND CRACK ENERGY

The opening and sliding mode stress intensity factors kl and k2 respectively, and the crack
formation energy W are defined by the equations

and

1 (C 1fc
W = 2JB PoURIB)[ue(R, 0) - ue(R, 27r)] dR +2 B PoUR!B)[UR(R, 0) - uR(R, 27r)) dR.

(3.1)

(3.2)

(3.3)

It is well known[4] that the stress intensity factor ko and the crack formation energy Wo of a
crack of length 2(C - B) in an infinite elastic solid which is subject to a uniform all round
tension Po are given by ko=PoY(C - B) and Wo= 7T(l- Jl2)p02(C - B)21E respectively. There­
fore, from (1.2), (2.1) and (2.2) we have

(3.4)

(3.5)

and

W 2 rc P1(t) t 2 (C P2(t) t
Wo= 7T(c-1)2JI \![(c-t)(t-1)])t Nr)drdt- 7T(c_1fJI \![(c-t)(t-l)]JI Ur)drdt.

(3.6)

4. UNIAXIAL TENSION

The first special case we consider is that in which an unixial tensile stress T acts remote
from the crack in the direction (J = a (see Fig. 1a). In this case we have[5] that Po = T,
Nr) =!o + r-2) -!o + 3r-4

) cos 2a and Ur) =!(l +2r-2- 3r-4
) sin 2a. Following Erdogan and

Gupta [6] we set xk=cos[(2k-1)7T/2n], tk=kc-1)xk+kc+1) and rj=
!(c-1)cos(j7Tln)+~c+1), k = 1,2 .... , n; j = 1,2 .... ,(n -1), and then replace the eqns (2.3),
(2.4) by the linear algebraic system

(4.1)

j = 1,2,3, ... , (n -1); j = 1,2. Having solved the system (4.1) for the Pj(tk) we calculate kJko
from the Chebyshev-Lagrange interpolation formula

kj == Y(2) t (_ )k(l +Xk)1/2p .(t) j == 12
ko n(c -1) ~I 1- Xk I k, ,

and WI Wo from the Gaussian quadrature formula

(4.2)

~ = n(c ~ 1)2tl Pj(tk){(tk - tk-
t
) - (tk - tk-

3
) cos 2a}- n(c ~ 1)2 tl Pj(tk)

x (tk - 2tk-
1+ tk-3

) sin 2a. (4.3)
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The stress intensity factors are shown as plots of ktlko and k2/ ko vs (C - B)/B for various
values of a, from 0° to 90°, in Fig. 2. The values of k2(a) are symmetrical about a = 45°. The
results for a = 0° and 90° are identical to those previously obtained for a crack at the edge of a
circular hole in a sheet under biaxial tension [2]. The crack formation energy is plotted as W/Wo
vs (C - B)/B in Fig. 3 for various a; the results for a = 0° and 90° agree with previous work [2].

Results for this case have been obtained previously by Hsu[7] using conformal mapping
techniques. The procedure described in this paper is more efficient in computing requirements:
the integral eqn (4.1) was reduced to 24 simultaneous linear equations to give results accurate to
about 0.1% whereas the conformal mapping technique requires between 40 and 140 equations to
give results of equivalent accuracy. A second advantage of the present technique is that it
suffers no loss in accuracy for short cracks; the edge crack limit is reproduced as CIB -'> 1+.
The mapping technique becomes increasingly inaccurate as the cracks become shorter and no
reliable results were obtained by Hsu [7] for C/B < 1.1. Reliable stress intensity factors for
short cracks are required for many important technological applications, in particular they are
required in the fulfilment of damage-tolerant design criteria in the development of aircraft
structures.
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Fig. 2. Stress intensity factors for a crack at the edge of a circular hole: uniaxial tensile stress remote from the
crack.

a

Fig. 3. Crack formation energy for a crack at the edge of a circular hole: uniaxial tensile stress remote from the
crack.
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5. POINT LOAD ACTING AT THE CIRCUMFERENCE OF THE HOLE

The second case we consider is that in which a force of magnitude F acts in the radial
direction at the point (B, (M on the circumstance of the hole. Green and Zerna[8] have shown
that in this case Po =F!2B, !J/(r) == gt(r) +agrtr) and Ur) =g3(r) +ag4(r) where a =
(3 - 4p)/2(l- p),

( )_1 [!+~_ 2rcos 4> (l +4r2- r4)cos 4>]
g. r - TT r2)(2)(2 rX4 ,

1+r 2

g2(r) == --3cos 4>,
TTr

and

If we let

Pt(r) = Qt(r) +aQ2(r),

P2(r) = Q3(r) +aQ4(r),

Mt(r, t) =M2(r, t) =(t - rr t +Kt(r, t),

and

then (2.24) and (12.29) are equivalent to the equations

1 r Q;(t)M;(r, t) dt _.() 1< <
TTlt \![(c-t)(t-l)] g, r, r c

Qi(l) =0

(5.l)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

i = 1, 2, 3, 4. Therefore, by the method of Erdogan and Gupta[6], we are led to the linear
algebraic system

(5.1l)

j = 1, 2, 3, ... ,(n -l); i = 1,2,3,4.

The dimensionless stress intensity factors and crack formation energy may now be calculated
from the formulae

(5.12)

and
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where

k(11 = Y(2) t (_)k(I+Xk)112Qj(td,
ko n(c-l)(:'l l-xk (5.14)

(5.15)

and

Gj(t) = f gj(r) dr. (5.16)

i, j = 1, 2, 3, 4.

Explicit expressions for the functions GM) are given in the Appendix. From Betti's theorem it
follows that Wl2 = W21 and W34 = W43, this provides a useful check on the numerical procedure
outlined above.
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Fig. 4. Components of the opening mode stress intensity factor for a crack at the edge of a point-loaded circular
hole.
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Fig. 5. Components of the sliding mode stress intensity factors for a crack at the edge of a point-loaded circular
hole.
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Fig. 6. Crack formation energy for a crack at the edge of a point-loaded circular hole.
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The two components k(l) and k(2) of the opening mode stress intensity factor k1 are shown
plotted as k(l)/ko and k(2)/kovs (C - B)/B in Fig. 4 for various values of cP (30°:5 cP :5 150°). The
results for k(l) at cP :::: 90" agree with previous work[2]; k(2) obeys the relation k(Z) (180" - <1» ::::

- k(2)(q,). Figure 5 shows the two components k(3) and k(4) of the sliding mode stress intensity
factor kz plotted as k(3)/ko and k(4)/ko vs (C - B)/B for various values of cPo The component k(4)
obeys the relation k(4) (180°- q,):::: k(4)(q,). The crack formation energy is plotted as W/Wo vs
(C - B)/B in Fig. 6.
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APPENDIX

The functions Gi(t)

The functions Gi(t) are defined by the equation

Gi(t) = f gi(r) dr

i = I, 2, 3. 4 where the gj(r) are given by (5.1) through (5.5). Therefore, if we let

(' rm

1m•• = JI x2• dr

where x2 = I - 2r cos t/J +r, we find that

G3 = 1. [1-1.2 - 21'.2 +Id sin cP
11'
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1 .
O. = - [I--J,O - 1 I.o)sm,p.

1T

The integrals 1m .• are described in detail in Gradshteyn and Ryshik [9]. In particular, we have

1 _')!-,o='2(1-1 ,

!-'.o=I-I-',

!-I.o= log I,

and

where b = - 2 cos ,p, d = 4 sin' ,p, R, = 1- 21 cos ,p + I' and R, = 2(1 - cos ,p).


